Machine Learning Immersive Course Syllabus

Monday 10.00am – 5.00pm	Course Overview	
	Intro to Python	
	 Variables / Datatypes 	
	 Core Iterables (strings, lists, tuples) 	
	 Conditionals and If/Elif/Else 	
	Definite Loops	
	Practice Exercises	
Tuesday 10.00am – 5.00pm	Intro to Pandas, Numpy, and	
	Matplotlib	
	 Importing Libraries 	
	Custom Functions	
	Indefinite Loops	
	Dictionaries	
	 Reading TXT and CSV Files 	
	Practice Exercises	
Wednesday 10.00am – 5.00pm	What is Machine Learning?	
	SciKit- Learn	
	Practice Dataset	
	Basic Data Cleaning	
	Practice Dataset	
	 What is Machine Learning? 	
	The Many Avenues in Data	
	Classification Models	
	Underfit vs Overfit	
	• Train/Test Split / Cross-validation	
	• Training a Model / Model Evaluation	
	Saving a Model	
	Practice Exercises	
Thursday 10.00am – 5.00pm	Regression Models / Evaluation	
	Practice Dataset	
	More ML Models	
	 Dealing with Missing Values 	
	Feature Selection	
	Feature Engineering	
	 Tuning Hyper parameters 	
	Begin Final Dataset	
Friday 10.00am – 5.00pm	Intro to Deep Neural Networks	
	 Intro to Statistics, SQL, and Tableau 	
	• Final Dataset / Q&A along the way	

Machine Learning Immersive Curriculum

Key objective: Students will develop technical software skills to extract, transform, scrape, join as well as clean large data sets. Students will develop code in Python to develop a detailed understanding of supervised and unsupervised machine learning environments. Upon mastery of the aforementioned concepts, students take apply their knowledge to data sets incorporating clustering methods and dimensionality reduction and Kernel methods in Python. By the end of this course, students develop a detailed understanding of Neural networks and advanced topics like advanced neural networks and convolution neural networks and their industry application.

	Learning objectives	CDOS standards
Торіс		
Supervised learning	Students apply supervised learning input-output pairing techniques to a data set.	Standard 3a - Foundational skills
	Students analyze the term concept learning and apply concept learning through conclusive evidence to their data set	Standard 3b / Standard 2- Career majors / Integrated learning
	Students assess and apply various algorithmic approaches to establish a supervised machine learning environments	Standard 2 - Integrated learning
Kernel support vector machine	Students apply statistical models including classification and regression analysis to interpret data sets	Standard 2 - Integrated learning
	Student analyze the algorithm of support vector clustering to map categorized unlabeled data within a dataset	Standard 2 - Integrated learning
Unsupervised learning	Students utilize an unlabelled data set as well as algorithmic patterns to organize a data set into clusters	Standard 3a - Foundation skills
	Students assess the various clustering techniques on data sets	Standard 3a - Career majors
Dimensionality reduction	Students calculate various methods on optimizing their learning environments	Standard 2- Integrated learning
	Students develop techniques on reducing random variables that clutter data	Standard 2 - Integrated learning
Artificial intelligence	Students assess deep learning concepts as well as how deep learning concepts are applied to the current workplace	Standard 3b / Standard 2- Career majors / Integrated learning